Glossar zum Thema

Suche nach Begriffen im Glossar (Reguläre Ausdrücke erlaubt)
Beginnt mit Enthält Genauer TrefferKlingt ähnlich wie ...
Alle A B C D E F G H I K L M N O P R S T U V W X Y Z
Begriff Definition
Natürliche Einheiten
Diesen in der Atom- und Elementarteilchenphysik sowie in Bereichen der Chemie verwendeten Einheiten, liegen anders als bei den SI-Einheiten die Erfordernisse von Experimenten und theoretischen Berechnungen in diesen Bereichen der Wissenschaft zu Grunde. Dieses System baut auf die Verwendung von in diesen Gebieten auftretenden Naturkonstanten auf. Es handelt sich dabei um die Lichtgeschwindigkeit im Vakuum (c = 299.792.458 m/s), das reduzierte Plank'sche Wirkungsquantum (h/2π = 1.054 571 68 (18)×10-34 J s)und die Ruhemasse des Elektrons (me = 9,109.382, 6(16) × 10-31kg). Die Zeit ist zum Beispiel in diesem System eine abgeleitete Größe mit der Einheit h/(2π mec2).
Natururan
Natururan bezeichnet das Uranmetall, wie es in der Natur vorkommt und abgebaut wird. Es enthält heute etwa 0,7 Prozent spaltbares 235U ( Uran ). Bei der Brennstaberzeugung wird üblicherweise das 235U auf zirka drei Prozent angereichert. Durch den hohen Anteil an 238U entsteht durch Neutronenbeschuss und Neutroneneinfang 239Pu ( Plutonium ). 239Pu wird unter anderem in Kernwaffen verwendet.
Neutron
Ein Neutron ist ein elektrisch neutrales Teilchen und Bestandteil von Atomkernen . Es hat eine Masse von 1,674.927.211 (84)×10-27kg. Die Masse des Neutrons ist etwas größer als die Masse des Protons . Neutronen werden durch das Standardmodell der Teilchenphysik als Hadronen angesehen. Sie sind aus zwei down-Quarks und einem up-Quark (Elementarteilchen) aufgebaut. Die mittlere Lebensdauer freier Neutronen beträgt 885,7 (8) s. Sie zerfallen unter Abgabe von Energie zu einem p+ (Proton) einem e- ( Elektron ) und einem νe (Elektronantineutrino).
Neutronenbeschuss
In einem kritischen Reaktor fliegen zahlreiche freie Neutronen aus der Kettenreaktion umher. Diese treffen auf Atomkerne im Reaktor und können dabei eingefangen werden. Das Auftreffen von freien Neutronen auf Atomkerne wird als Neutronenbeschuss (von Atomkernen) bezeichnet.
Neutroneneinfang
Der Neutroneneinfang in Atomkernen ist eine Kernreaktion , bei der Atomkerne ein oder mehrere Neutronen , mit denen Sie beschossen worden sind, absorbieren (aufnehmen). In der Folge können neue (schwerere) Elemente gebildet werden oder es kommt zur Kernspaltung. Den Prozess des Einfangens und der Erzeugung schwererer Isotope nennt man Brüten (siehe Brutreaktor beziehungsweise Schnelle Brutreaktoren - SBR). Der Neutroneneinfang in 238U wird in speziellen Produktionsreaktoren ("Plutoniumbrüter") für die Herstellung (Erbrütung) von waffenfähigem 239Pu ( Plutonium) genutzt. Dabei muss ein großer Reaktor monatelang betrieben werden, um eine Tonne Plutonium zu erbrüten. Das Schwermetall ist dann im verbrauchten Brennstoff enthalten.
Neutronenradiographie
Die Neutronenradiographie ist eine Methode zur Materialuntersuchung mit Hilfe von Neutronen . Dabei wird die Materialprobe einem Neutronenstrahl (etwa aus einem Reaktor) ausgesetzt und mit einem ortempfindlichen Messgerät die Durchstrahlung gemessen. Damit ähnelt die Neutronenradiographie der Röntgenanalyse . Sie ist jedoch zu dieser komplementär: Während sich mit Röntgenaufnahmen vor allem leichte Elemente durchsichtig machen lassen (etwa wasserhaltiges Körpergewebe oder aber Kunststoffe), lassen sich mit Neutronen vor allem schwere Elemente gut durchleuchten (etwa Stahl). Neutronenradiographie und Röntgenanalyse ergänzen sich daher. Die Radiographie hat in Forschung und Entwicklung, etwa bei der Qualitätsuntersuchung von Maschinenteilen, zahlreiche Anwendungen und wird auch am Reaktor des Atominstituts der österreichischen Universitäten in Wien durchgeführt.
Notabschaltung
Unter Notabschaltung versteht man die Einführung einer großen Anzahl zusätzlicher Kontrollstäbe , um die Kettenreaktion völlig zu unterbrechen (SCRAM noch eine Zeit lang gekühlt werden, um die -System). Auch nach einer Notabschaltung muss der Reaktor Nachzerfallswärme abführen.
Notkühlung
Üblicherweise gibt es bei einem Kernreaktor mehrere Notkühlsysteme. Eines kommt bei kleinen Lecks der Kühlleitungen zum Einsatz. Es bringt unter hohem Druck wenig Wasser in das System ein. Das andere flutet bei sehr großen Lecks den Reaktorkern. Ein funktionierendes Notkühlsystem ist äußerst wichtig. Im Ernstfall soll es schwere Freisetzungen von Radioaktivität in die Umgebung verhindern.
Notstandssystem
Das Notstandssystem soll den Reaktor im Störfall unter Kontrolle halten. Hierzu gehören Notabschaltung , Notkühlung und Notstromversorgung .
Notstromversorgung
Ein Ausfall der Netzversorgung kommt in allen Kraftwerkstypen recht häufig vor. Meist entsteht dieser durch externe Ereignisse wie Sturm oder Schneefälle. Transformatorbrand und Schaltversagen sind weitere Ursachen. Bei vollständigem Ausfall der Stromversorgung kann es durch Ausfall der Kühlung des Reaktors im Extremfall zur Kernschmelze kommen. Im Notfall wird daher die Stromversorgung durch Akkubatterien und Dieselgeneratoren aufrechterhalten.
Nukleon
Ein Nukleon ist ein Baustein des Atomkerns . Es handelt sich dabei um ein Proton oder ein Neutron . Nukleonen bestehen aus drei Quarks (Elementarteilchen). Auf sie wirkt die sogenannte starke Wechselwirkung oder Kernkraft (die starke Wechselwirkung ist die stärkste der fundamentalen Kräfte Gravitation, elektro-schwache Wechselwirkung, starke Wechselwirkung). Sie ist eine kurzreichweitige (ca. 10-15m) aber dafür sehr starke Kraft. Sie hält die Atomkerne gegen die elektrische Abstoßung der Protonen zusammen.
Ordnungszahl
Das Periodensystem der Elemente ist eine systematische Aufstellung aller bekannten Materien. Es ist nach der Anzahl der Protonen im Atomkern beziehungsweise der (gleichen) Zahl an Elektronen in der Elektronenhülle geordnet. Die Ordnungszahl sagt nichts über das Isotop (Anzahl der Neutronen im Atomkern) aus. Isotope eines Elements verhalten sich chemisch gleich. Man geht davon aus, dass alle bekannten Materien aus Atomen bestehen. Das leichteste Element ist der Wasserstoff (H) mit nur einem Proton im Kern (beziehungsweise einem Elektron in der Atomhülle ). Danach folgt Helium (He) mit zwei Protonen, Lithium (Li) mit drei Protonen und so weiter. Die Elemente ab Po (Polonium, Ordnungszahl 84) sind alle radioaktiv , das heißt sie haben keine stabilen Isotope. Die Elemente Tc (Technetium, Ordnungszahl 43) und Pm (Promethium, Ordnungszahl 61) haben ebenfalls keine stabilen Isotope. Auf der Sonne oder in Kernreaktoren werden auch schwerere Elemente als Uran gebildet, wie Np (Neptunium, Ordnungszahl 93), Pu ( Plutonium , Ordnungszahl 94), Am (Americium, Ordnungszahl 95), Cm (Curium, Ordnungszahl 96), etc.
Periodensystem der Elemente

Das Periodensystem der Elemente ist eine systematische Aufstellung aller bekannten Elemente nach ihrer Ordnungszahl (Kernladungszahl). Erstmals wurde der Versuch einer tabellarischen Ordnung nahezu zeitgleich und unabhängig vom russischen Chemiker D. I. Mendelejew (1834-1907) und vom deutschen Chemiker und Arzt L. Meyer (1830-1895) unternommen. Das Periodensystem der Elemente ist nach wie vor Grundlage der Systematik der Elemente in der Chemie und der Physik.

Plasma
Das Plasma ist neben gasförmig, flüssig und fest - ein Zustand der Materie, welcher nur bei sehr hohen Energien vorkommt. Im Plasma sind die Atomkerne gäntlich oder teilweise von der Atomhülle getrennt. Ein Plasma bestitzt keine feste innere Struktur und wird wesentlich durch die elektromagnetische Wechselwirkung bestimmt.
Plutonium

Pu
Verwendet werden bei Plutonium die Isotope 238Pu ( Halbwertszeit 87,74 Jahre) und 239Pu ( Halbwertszeit 24.110 Jahre). 239Pu wird in Kernwaffen als Spaltstoff eingesetzt. Die kritische Masse von 239Pu beträgt etwa 10 kg, durch technische Maßnahmen benötigt der Bau einer Plutoniumbombe nur etwa vier bis fünf Kilogramm 239Pu. 238Pu wird in der Weltraumtechnik verwendet. Plutonium ist ein sehr starkes chemisches Gift und ein Alphastrahler der zu einem geringen Prozentsatz auch spontanen Zerfall zeigt. Bereits ein Millionstel Gramm kann, wenn es inhaliert wird, Lungenkrebs auslösen. Pu entsteht beim normalen Reaktorbetrieb. Wird ein Urankern 238U von einem Neutron getroffen, so kann er dieses in seinen Kern aufnehmen, das entstehende 239U ist radioaktiv und zerfällt mit zweimaligen β-Zerfall (mit 239Np als Zwischenstufe) zu 239Pu. Pu wird in Schnellen Brutreaktoren gezielt erzeugt. Es entsteht in jedem Reaktor als "Verunreinigung" in den Brennelementen. Bei der Wiederaufbereitung der Brennelemente werden jedes Jahr weltweit zirka 30 Tonnen Plutonium abgetrennt und separat gelagert. Die militärischen Bestände belaufen sich auf zirka 300 Tonnen (WISE Special 1997: The MOX Myth). Die weltweiten Bestände von Plutonium liegen bei 2.000 bis 3.000 Tonnen. Nach wie vor wird die sichere Lagerung von Plutonium beziehungsweise die Entsorgung stark diskutiert. Plutonium darf nicht in die Umwelt gelangen, da es sich um einen giftigen und radioaktiven Stoff handelt. Der Zugriff von nicht autorisierten Personen auf die Plutoniumbestände sollte erschwert werden. Die Weiterverbreitung von Kernwaffen unter nicht staatlichen Akteuren wird dadurch verlangsamt. Neben dem Eingießen in Glas setzt man zunehmend auf die MOX-Technologie. Dabei werden den Uran-Brennelementen zirka fünf Prozent Pu zugesetzt. Im Vergleich mit den gelagerten Mengen an Plutonium ist diese Menge gering. Die MOX-Technologie kann auch als Versuch entsprechender Industriezweige zur Aufrechterhaltung ihrer Bedeutung gewertet werden. Die Vermischung des Alphastrahlers Plutonium mit Gammastrahlern ist eine Möglichkeit, um die Handhabung komplizierter zu gestalten. Damit wird der Plutoniumproliferation (Weitergabe des Materials zur Herstellung von Atomwaffen) vorgebeugt.

TPL_WUA_ADDITIONAL_INFORMATION